Introduction

Development patterns in an area are primarily shaped by the transportation modes available during the time of development. The KYOVA study area, originally established near the confluence of the Ohio and Big Sandy Rivers because they allowed for the easy movement of goods and people, has also over the past century expanded around a robust local and regional roadway network. This network provides efficient travel to destinations along the rivers and also provides overland connections between different economic centers around the region such as Charleston, West Virginia, Columbus, Ohio, and Lexington, Kentucky. The Roadway Element of the KYOVA 2040 Metropolitan Transportation Plan documents current and forecasted roadway conditions within the study area and builds the foundation for evaluating existing and future transportation needs at the corridor level.

Following a general discussion of transportation corridors and activity centers, the description of roadway conditions is organized into the following sections:

Corridor Characteristics

- Functional Classifications
- Corridor Operations (traffic and congestion)
- Public Perception

Recommendations

- Development and Prioritization Process
- Project Recommendations
- Downtown Huntington Access Study
- Project Sheets

Often neighborhoods and activity centers rely on a small number of transportation corridors to provide essential links.

Transportation Corridors and Activity Centers

Within the KYOVA study area are several activity centers that attract numerous peak period trips each day. The majority of these centers are located along the Ohio and Big Sandy Rivers, which are paralleled by major roadway corridors such as US 52, SR 7, I64, and US 60. As populations and demographics in each of these centers continue to shift and change, traffic volumes can be expected to change as well. The changing patterns will influence traffic patterns and create new deficiencies on the existing transportation network. Traffic bottlenecks may become evident in places that currently function adequately while existing deficiencies may be magnified. An important goal of this plan was to assess how to maintain the existing network while identifying key areas for expansion. As roadway infrastructure ages, replacement and repair of facilities, including the major bridges within the study area, will need to be included in the long range plan. Also, any new facilities such as the proposed phases of the Chesapeake Bypass (SR 7) corridor and the proposed Ohio River bridges will affect how the area develops and where new traffic impacts will be felt.

How the roadway network facilitates interaction between activity centers is important, as are the mobility choices provided within these centers. Often neighborhoods and economic/activity centers rely on a few key transportation corridors to provide essential links between home, school, employment, shopping, social, and recreational destinations. The two largest economic centers in the KYOVA region are Huntington, West Virginia and Ironton, Ohio. However, other areas such as Barboursville, West Virginia and South Point, Ohio also contain significant activity or destination points.
As residential, commercial, and industrial growth occurs and more vehicles take to the road, roadway improvements will be needed to reduce traffic congestion and improve safety. These improvements often enhance access, thus raising land values and attracting more development. The circular diagram on the next page illustrates this continuing cycle of influence between land use and transportation.

A common challenge in designing successful transportation systems is to improve connectivity and access within an area while also preserving natural features and the unique character of the many towns and cultures nearby. Neighborhoods and smaller communities within the area may have many needs and priorities that are unique from one another. While recognizing these differences, it is important not to lose focus of the practical concept of overall connectivity. This concept is particularly relevant as it relates to people's desires to make safe and efficient trips not only by driving but also by walking, bicycling, or using public transportation.
Walkable areas are typically characterized by a well-connected street network with relatively small block sizes ideally no more than 400 or 500 feet in length such as in the traditional downtown areas of Huntington or Ironton. Small block sizes allow pedestrians to find shorter routes to nearby destinations. A well-connected street network also disperses traffic-particularly local traffic-which can help lower vehicular volumes and speeds throughout the network, thereby improving safety for pedestrians. Many of the roadways outside of these traditional downtowns are large arterials with no nearby parallel facilities, and the more recently constructed local streets are closed at one end and provide no through connections thereby reducing the opportunity for multi-modal mobility.

Table 3.1 - Activity Center Characteristics

Regional Activity Center

- Large-scale, transit-supportive center with employee-intensive land uses
- Core areas contain large-scale and high intensity urban land uses supported by and serving communities within the region
- Accessed by interstates/freeways, principal arterials, and public transportation
- Served by municipal water and sewer
- Higher residential densities
- Balanced between residential/non-residential land uses
- Example: Downtown Huntington, Downtown Ironton

Community Activity Center

- Include a combination of retail, personal services, civic, educational, and social uses
- Core areas contain medium-scale development that serve the day-today needs and activities of the core area occupants and the surrounding neighborhoods
- Accessed by principal arterials and public transportation
- Served by municipal water and sewer
- Medium density residential areas
- Land use mix is generally around 60% residential and 40% nonresidential
- Example: Barboursville (around Huntington Mall)

Neighborhood Activity Center

- Large-scale, transit-supportive center with employee-intensive land uses
- Mostly residential with a mixed-use core that serves as a focal point for the neighborhood and provides retail and service needs
- Accessed by major and minor arterials with integrated collector street access
- Mixture of low and medium density residential areas
- Transit service provided or desired
- Example: Ceredo (around Ceredo Plaza Shopping Center), Proctorville

Corridor Characteristics

As the region's economy expands and people continue to relocate to the area, the frequency and length of trips on the current system of highways and streets is expected to increase. Increased traffic may create new or worsening deficiencies within the existing transportation network, and traffic bottlenecks may become evident in places that currently function adequately. To anticipate future problem areas, it is helpful to understand the characteristics of the existing transportation corridors in the region.

Functional Classification

An effective roadway network must manage two competing demands placed on the system: 1) providing access to specific destinations and 2) facilitating long-range mobility between centers. Strategies to meet these two demands are inherently adverse to each other (i.e. increasing access on one facility usually limits mobility along the same

Portion of Service
 facility). Therefore, it is advantageous to create layered transportation networks, in which some facilities afford easy access and others provide longrange, higher-speed mobility.

Balancing access and mobility creates roadways with different contexts that serve a variety of user groups and adjacent land uses. For example, the primary function of local or neighborhood streets is to provide access. These streets are intended to serve localized areas or neighborhoods, including local commercial and mixed-use land uses (i.e. low speeds, low volumes, and short distances). Local streets are not intended for use by large volumes of through traffic. Meanwhile, the primary function of arterials is mobility. Limiting access points (intersections and driveways) on arterials enhances mobility. Too much mobility at high speeds can inhibit access by pedestrians and bicyclists. An arterial is designed with the intent to carry more traffic than is generated within its corridor.

Roadway functional classifications are stratified by purpose and character between these two extremes. Roadways can be categorized into one of five or so functional classifications, with each classification exhibiting certain traits and characteristics. It should be noted that the lines between these classifications are not exact and are often defined differently in different jurisdictions. Roadways exist on a continuum between the two principles of access and mobility that makes specific definitions difficult to apply. In order of decreasing mobility, the five classifications used in the KYOV A 2040 MTP are: expressways and freeways, major arterials, minor arterials, collectors, and local roads. Each classification is described here, along with its typical characteristics and an example roadway in the KYOVA area that fits its profile.

- Expressways and Freeways
- Provide the most mobility and least amount of access (access restricted to grade-separated interchanges)
- Typically serve longer distance travel and support regional mobility
- Maintenance and improvement typically funded by state
- Local Example: I-64

- Major Arterials

- Have tightly controlled access
- Carefully spaced at-grade intersections and few, if any, individual site driveways
- Serve medium to longer distance travel
- Typically connect minor arterials and collector streets to freeways and other higher type roadway facilities
- Maintenance and improvement typically funded by state (sometimes funded through partnerships with local municipalities)
- Local Example: US 52 along the Ohio River

- Minor Arterials

- Primarily serve a mobility function but often have more closely spaced intersections and some individual site driveways
- Generally have lower design and posted speeds compared to major arterials
- Primarily serve travel demand within the local area
- Connect to other minor arterials, to major arterials, and to collector streets
- Provide a higher level of access to adjacent land uses than major arterials
- Typically have lower traffic volumes
- Maintenance and improvement typically funded by state (sometimes funded through partnerships with local municipalities)
- Local Example: SR 7 along the Ohio River; Park Avenue through downtown Ironton; US 60 (transitions into a minor arterial as it enters into the downtown area)

- Collectors

- Typically provide less overall mobility, operate at lower speeds, have more frequent and greater access flexibility with adjacent land uses, and serve shorter distance travel than arterials
- Provide critical connections by bridging the gap between arterials and local streets
- Usually connect with one another, with local streets, and with nonfreeway/expressway arterials
- Primarily collect traffic from neighborhoods and distribute it to the system of major and minor arterials

- Locals:

- Provide greater access and the least amount of mobility
- Typically connect to one another or to collector streets and provide a high level of access to adjacent developments
- Serve short distance travel and have low posted speed limits (typically 25 mph to 35 mph)
- Local Example: most roadways within the study area
Once streets have been classified into these functional categories, they can be further classified into urban or rural contexts to reflect an additional layer of design considerations. For example, an arterial in an urban setting may exhibit different features - curb and gutter, lighting, or bicycle and pedestrian facilities - that are not always present in a rural setting.

Multimodal Roadways |"Complete Streets"

Across the nation, interest has surged in creating "complete streets" within existing roadway networks. The National Complete Streets Coalition defines a complete street as enabling all users inclusive of pedestrians, bicyclists, motorists and transit riders of all ages and abilities to safely move along and across a street. Primarily, roadways with lower speeds and greater access points (local streets and collectors) provide the greatest opportunities for developing complete streets. However, all functional classifications are eligible for some consideration of multi-modal users even if only for motorists and regional transit (such as on expressways and freeways). Multi-modal options and opportunities for complete streets were explored during the needs assessment and recommendations portion of the KYOV A 2040 MTP.

- Local Example: Madison Avenue through downtown Huntington

Corridor Operations

Regional Mobility Corridors

The KYOVA area benefits from having multiple options for regional mobility. This mobility is anchored by a few key routes including US 52, I-64, WV 152, US 60, SR 7, WV 10 and WV 2. US 52 provides a critical transportation corridor for the economic vitality within the KYOVA region, serving as a link between the many industrial communities along the Ohio and Big Sandy Rivers such as Huntington, Ironton, Coal Grove, and Prichard. I-64 and US 60 provide an important regional east-west link to other metropolitan areas such as Charleston, West Virginia and Lexington, Kentucky. SR 7, WV 152, WV 10, and WV 2 provide connections to surrounding local communities to the south and points along the Ohio River to the northeast of the study area.

Average Annual Daily Traffic

Traffic volumes signify the total number of vehicles traveling along a roadway segment on an average day. Figure 3.1 illustrates the existing traffic volumes (vehicles per day) on study roadways in the KYOVA area based on the regional travel demand model. I-64 directly south of downtown Huntington has among the area's highest traffic volume with approximately 44,000 vehicles per day (vpd). US 60 entering downtown Huntington from the east carries more than 30,000 vpd. US 52 between South Point and Coal Grove carries nearly 39,000 vpd. As US 60 travels through the downtown area and the roadway character becomes more urban (closer intersections and a traditional street grid network), it still maintains relatively high volumes (up to 15,000 vpd). US 60 also has between 15,000 and 20,000 vpd through Barboursville and up to 10,000 vpd through Ceredo and Kenova.
Other notable corridors with high traffic volumes include:

- Huntington Mall Road (35,000 vpd);
- US 52 north of the Ohio River near Chesapeake (26,000 vpd);
- US 52 entering Ironton from the southeast (16,500 vpd);
- WV 10 entering Huntington from the southeast ($20,500 \mathrm{vpd}$);
- WV 152 entering Huntington from the south (21,000 vpd); and
- \quad SR 7 Bypass of Chesapeake ($18,000 \mathrm{vpd}$).

These roadways represent the critical access points into the Huntington employment and economic center. Numerous other important collectors and local roads within Huntington and surrounding communities carry smaller volumes of traffic proportional to their design and location.

This page intentionally left blank.

This page intentionally left blank.

Congested Corridors

Traffic volumes only provide a piece of the story because they do not account for functional classification and roadway capacity. A better measurement is volume-to-capacity (V/C) ratios, which are calculated by dividing the traffic volume of a roadway segment by its theoretical capacity. The resulting measurement provides a benchmark for levels of congestion and standardizes traffic analysis. For the purposes of the KYOV A 2040 MTP, V/C ratios are grouped into one of the following categories:

- Below Capacity |LOS A, B, or C
V / C is less than 0.8
Roadways operating below capacity are without congestion during peak travel periods. This level of service usually occurs on rural or local streets. As the V/C nears 0.8 , the roadway becomes more congested. These roadways may operate effectively during non-peak periods but be congested during morning and evening peak travel periods.
- At Capacity LOS D $^{\text {D }}$
V / C is 0.8 to 1.0
Roadways operating at capacity are somewhat congested during non-peak periods with congestion building during peak periods. A change in capacity due to incidents impacts the travel flow. Roadways in this category most efficiently balance corridor operations with cost of instrastructure.
- Above Capacity |LOS E or F
V / C is greater than 1.0
Roadways operating above capacity experience heavy congestion during peak periods and moderate congestion during non-peak periods. Changes in capacity can have major impacts on corridors and may create gridlock conditions. Roadways with V/C ratios exceeding 1.2 are congested during non-peak periods and likely operate in stop-and-go gridlock conditions during the peak travel periods.

Existing (2010) Conditions

Figure 3.2 shows how roadways in the KYOVA region currently (2010) perform based on the three categories. The V/C ratios computed for these roadways is based on output from the KYOVA regional travel demand model, which predicts volumes and movement on the transportation system based on development patterns, mode choice, and preferred routing based on trip length, speed, and friction. Roadways operating above capacity warranted special consideration to alleviate congestion and improve the overall transportation system.
The map of existing congestion shows minimal congestion in the KYOVA region. Corridors with notable congestion in the 2010 model base year include:

- US 52 over the Ohio River between Huntington and Lawrence County, Ohio;
- WV 152 north of Lavalette;
- US 52 near Coal Grove;
- US 60 just east of the interchange with I-64 near Pea Ridge;
- US 60 between the Guyandotte River and WV 193 (Big Ben Bowen Highway); and
- CR 19 near XV 193.

This page intentionally left blank.

Figure 3.2
Base Year Congestion (2010)
2010 Volume-to-Capacity Ratio

- Below Capacity ($\mathrm{v} / \mathrm{c}<0.80$)
$=$ At Capacity ($0.8<\mathrm{v} / \mathrm{c}<1.0$)
——Above Capacity ($\mathrm{v} / \mathrm{c}>1.0$)

This page intentionally left blank.

Existing + Committed (2040) Conditions

The Transportation Improvement Program (TIP) is a four-year schedule of federally assisted transportation projects for the three-county region that is required under the MAP-21 legislation. TIP projects include roadway, transit, bicycle, pedestrian, and freight transportation. The TIP is revised and issued biennially by the KYOVA Interstate Planning Commission in coordination with ODOT and WVDOT. The TIP includes cost estimates and funding sources. Once compiled, the list of projects must meet federal air quality requirements under the 1997 eight-hour ozone NAAQS. The development of the 2012-2015 TIP primarily was guided by the Huntington-Ironton Area Transportation Study (HIATS) 2035 Long-Range Transportation Plan. The 2014-2017 TIP is being development concurrently with the KYOVA 2040 MTP.

The TIP must be financially constrained, so a financial plan is included to demonstrate the list of projects can be implemented with the financial resources reasonably expected to be available in the KYOVA area over the next four years. Some projects included in the TIP are completely funded using federal money, while others are supplemented with state and local dollars. The current 2012-2015 total TIP program cost is $\$ 220$ million including all Federal, State, and Local sources with approximately 25% being spent in Ohio and 75% being spent in West Virginia ($\$ 55$ and $\$ 165$ million, respectively).

Table 3.2 lists the TIP projects from the 2014-2017 TIP that are relevant to this chapter. Figure 3.3 depicts traffic congestion in 2040 for the KYOVA area assuming these committed projects are added to the existing transportation network. This process helps illustrate what needs of the system beyond the projects currently slated for improvement.

Project ID	Route/Section	Length (mile)	Location and Description	Total Cost (000's)
Lawrence County, Ohio				
81595	Ironton Russell Bridge	0.10	Replace bridge over the Ohio River between Ironton, OH and Russell, KY at a new location and perform necessary approach work	93,050
Cabell County, West Virginia				
U306-10/-13.35 00	WV 10	2	Upgrade to 4 lanes between Huntington and Melissa Road	29,000
U306-10/-13.36 00	WV 10	2.27	Upgrade to 4 lanes between Huntington and Melissa Road	5,900

This page intentionally left blank.

Figure 3.3
Existing + Committed Congestion (2040)
2040 Existing + Committed Volume-to-Capacity Ratio

- Below Capacity (v/c <0.80)
= At Capacity ($0.8<\mathrm{v} / \mathrm{c}<1.0$)
= Above Capacity ($\mathrm{v} / \mathrm{c}>1.0$)

This page intentionally left blank.

Travel Sheds

For some people, it is hard to translate traffic volumes, functional classification, and congestion into real world terms. A travel shed is a simple way to show data from the travel demand model. The four maps below show how far someone can travel from the center of the city using today's roadway network. A motorist can travel within the green area in 20 minutes or less and the yellow area in 40 minutes or less. It would take a motorist at least 40 minutes to reach the areas in pink.

Huntington Travel Shed

South Point Travel Shed

Travel shed maps can clearly illustrate the opportunities and obstacles that are part of the current transportation system. For example, the travel shed centered on Barboursville is linear, following US 60 and I-64. The capacity and speeds of these roads allow the user to travel longer distances more quickly than they could in other areas. The opposite is true around Prichard, where inadequate roads inhibit rapid or effective travel to Lavalette and Wayne.

Barboursville Travel Shed

Prichard Travel Shed

2040 Metropolitan Transportation Plan krova Interstate Pamwng Commssion

Public Perception

During the public outreach process for the KYOV A 2040 MTP, residents and local staff expressed their views on numerous issues for corridors and intersections. Feedback from the outreach events was gathered to help inform the decision-making process in this plan. In most cases, comments on corridor congestion and intersection safety were borne out by the data gathered in the existing conditions analysis. Specific comments included:

- East Huntington Bridge can become very congested during peak periods;
- Enhancements are needed on some of the streets in downtown Huntington - 3rd Avenue from $16^{\text {th }}$ Street to $20^{\text {th }}$ Street needs to be a complete street;
- Carpooling along SR 2 to Columbus, Ohio is in high demand - SR 2 needs to be 4 lanes wide; and
- US 60 signage is confusing.

Several comments touched on the need for better signal coordination throughout the study area. Multiple workshop participants proposed improving access to Prichard, either by improving US 52, connecting with US 23, or providing a new connection from Prichard to the east or northeast, possibly connecting directly with Lavalette.

Recommendations

Development and Prioritization Process

Recommendations were developed based on public feedback and stakeholder outreach as well as a review of the 2035 LRTP, available congestion and safety data, the West Virginia and Ohio Statewide Plans, and other applicable planning efforts. Once recommendations were established, a rational and defensible system had to be developed to prioritize projects for funding and implementation. Modal elements often are considered separately due to different funding sources and evaluation criteria. A discussion between KYOVA, the Regional Intergovernmental Council (RIC), and the West Virginia Department of Transportation (WVDOT) established how best to evaluate these projects. The continued growth of the Charleston and Huntington metropolitan areas places an added importance on creating a streamlined process for project evaluation.

During this correspondence, a set of quantitative and geographic evaluation criteria were identified for use in both the KYOVA and RIC MTPs. Each criterion is listed on the pages that follow with the proposed data sources and calculation methods. The data sources and calculations shown are unique to the KYOVA area. Applying these evaluation criteria helped establish an objective project score. Criteria within the evaluation process have assigned weights based on how the Steering Committee ranked the six transportation priorities or focus areas: Goods Movement, Tourism and Recreation, Barriers to Mobility, Congestion Mitigation, Livability and Complete Streets, and Multimodal Integration. The intent of this process is to address local priorities, state concerns, and the emphasis on the development and use of performance measures set forth in MAP-21.

The Steering Committee identified the projects of highest importance to the MPO area. Results from this exercise were combined with the objective scoring process to establish an overall tiered project prioritization. This tiered process follows the concept currently being developed as a part of WVDOT's statewide prioritization efforts.

Note: The color-coding applied to the tiers in the Prioritization Matrix (Table 3.3) correspond the colors shown for each tier in the Project Prioritization methodology diagram above.

Prioritization Criteria

The following quantitative and geographic criteria were established to evaluate roadway projects for the 2040 KYOV A MTP. Scores from each of these criteria were summed to obtain the total objective score.

Efficiency-Efficiency is a measure of the project's impact on reducing regional vehicle miles traveled (VMT) determined by running each project individually in the KYOVA travel demand model. If a project causes an increase in regional VMT, it received a score of 0 . Otherwise, projects were indexed between 0 and 1 (from 0 to the greatest VMT decrease).

Reduction in Delay-Reduction in delay is a measure of the project's impact on the region's vehicle hours of travel determined by running each project individually in the KYOVA travel demand model. If a project causes an increase in regional delay, it received a score of 0 . Otherwise, projects were indexed between 0 and 1 (from 0 to the greatest decrease in hours of delay).

Reduction in Excess Demand-This category is a measure of the reduction in excess demand resulting from the project's implementation. It is focused on the performance of the specific project rather than regional performance. Each project was run individually in the KYOVA travel demand model. For projects having an existing volume less than the roadway's current capacity (assessed at a LOS D), a value of 0 was assigned because these projects do not experience excess demand and don't qualify for a benefit. New location projects also received a score of 0 . For the remaining projects, this measure subtracted the future roadway capacity from the future roadway volume and calculated the difference from the existing roadway conditions. Projects were indexed from 0 to the highest calculated value, with any project resulting in a negative value receiving a 0 .
Support of Freight Priorities-This measure indicated whether improvements to the route would serve freight needs. It was determined by identifying whether the improved section lies along an identified freight route or serves an intermodal terminal. Projects meeting these criteria received a value of 1 . Projects not meeting the criteria received a value of 0 . New location projects were assessed on a case-by-case basis to determine whether the likelihood they would be used to serve freight traffic.

Support of Transit Service-This measure indicates whether improvements to the route will serve transit needs. If the project lies along a current or proposed transit route, it received a score of 1 ; otherwise it received a score of 0 .

Support of Bicycle and Pedestrian Mobility-This measure is meant to indicate whether improvements to the route have the potential to better serve bicycle and pedestrian mobility. The project will receive a 1 if it contains a recommendation for future bicycle and pedestrian facilities (detailed in Chapter 6). Otherwise, it received a score of 0 .

Safety-This measure indicates whether the recommended project could improve safety at critical intersections. This measure was assessed by referencing the identified intersection safety improvement locations. A score of 1 was assigned if the project includes one or more intersections and a score of 0 if no intersections are addressed.

2040 Metropolitan Transportation Plan krova interstate Phannug Commssion

Growth Management-This measure reflects portions of the KYOVA area identified as having the potential for future population growth. These areas have been determined through the MTP's land use analysis process (detailed in Chapter 8). If a project falls within an identified growth area, it will receive a score of 1 . Otherwise, it received a score of 0 .

Economic Development-This measure recognizes areas forecasted to have employment growth in the 2040 plan horizon year determined by referencing the travel demand model. The travel demand model reveals traffic analysis zones (TAZs) experiencing employment growth. The number of TAZs with growth was divided by the total number of TAZs through which the project travels.

Social Criteria-Using data from the 2010 Census, this measure assesses impacts of proposed projects to areas with high minority, Hispanic, and low income populations. Based on established ranges for each social criterion, a value of $0,0.5$, or 1 was assigned.
Environmental Criteria-This measure reflects whether proposed projects impact wetlands or floodplains. If the proposed project crosses either of these features, a value of 0 was assigned. Otherwise, the project received a value of 1 .

Existing Deficiency-The existing deficiency measures the existing level of service at the project location to reflect whether the proposed project relieves existing congestion issues. If a project roadway is below capacity it receives a score of 0 , if it is approaching or at capacity it receives a score of 0.5 , and if it is above capacity it receives a score of 1 .

Cost Effectiveness-This measure provides an understanding of the congestion relief afforded by a project compared with its overall cost. To calculate this measure, the reduction of delay was divided by the estimated project cost in 2012 dollars.
State Priority-This measure values projects that are included in the West Virginia or Ohio Statewide Plans. If the project appears in either document, it receives a score of 1 . Otherwise, the project receives a score of 0 .

Project Recommendations

Collectively, the corridor characteristics describe a series of needs and priorities for the region's network of highways and streets. Travel demand along the main corridors coupled with environmental and fiscal constraints will challenge local efforts to enhance mobility for people and freight within and through the region. These constraints make it especially hard to build new roads, so more emphasis in the KYOV A 2040 MTP has been placed on maximizing the region's existing infrastructure.

Prioritization Matrix

The recommendations are presented in matrix form, showing the outcome of the prioritization process described in the preceding section. Projects are grouped by county. The matrix (Table 3.3) has been simplified for display in the report by showing only the following columns of information:

- Tier
- Project number (corresponds to Figure 3.4 and Figure 3.4a)
- Project type (bridge construction, multimodal/downtown, operations, widening, or new location)
- Project road
- Location (municipality or county)
- Estimated cost (in millions of dollars)
- Project length (in miles)
- Objective Prioritization Score
- Steering Committee Ranking
- Steering Committee Average Score

The prioritization process directly informed the development of the financial and implementation plans shown in Chapters 9 and 10, respectively.

Figure 3.4
2040 Roadway Recommendations
= Committed
$=$ Roadway New Location
= Roadway Widening
[Multimodal/Downtown Improvements
\because Bridge Construction

- Bridge Replacement

This page intentionally left blank.

This page intentionally left blank.

Table 3.3 - Prioritization Matrix

					Estimated	Project	jective	Steering Committee	
Tier	No.	Project Type	Project Road	Location	Cost (\$ Millions)	Length (Miles)	Score	Ranking	Average Score

Cabell County, wV

1	CB 1	Bridge Construction	Ohio River Bridge	Lesage, WV	100.0	1.0	34.0	18	2.3
1	CB 2	Bridge Replacement	W 17th Street Bridge	Huntington, WV	90.0	0.3	29.8	9	3.0
3	CR 1	Multimodal/ Downtown	Bridge Street	Guyandotte, WV	5.2	0.9	11.9	37	1.7
3	CR 2	Multimodal/ Downtown	Main Street	Guyandotte, WV	1.8	0.3	18.6	37	1.7
3	CR 3	Multimodal/ Downtown	Buffington Street	Guyandotte, WV	2.3	0.4	13.1	42	1.6
3	CR 4	Multimodal/ Downtown	5th Avenue	Guyandotte, WV	5.3	0.9	23.2	42	1.6
3	CR 5	Multimodal/ Downtown	Guyan Street	Guyandotte, WV	1.8	0.3	8.4	37	1.7
3	CR 6	Multimodal/ Downtown	Short Street	Guyandotte, WV	1.2	0.2	8.4	37	1.7
2	CR 7	Widening	1st Street	Huntington, WV	6.8	0.3	24.4	14	2.4
3	CR 8	Multimodal/ Downtown	3rd Avenue	Huntington, WV	6.0	5.1	23.2	32	1.8
3	CR 9	Multimodal/ Downtown	5th Avenue	Huntington, WV	6.0	5.0	23.2	32	1.8
1	CR 10	Widening	8th Avenue	Huntington, WV	15.0	2.2	31.6	3	3.8
2	CR 11	Widening	College Avenue/Martha Road (CR 30/2)	Barboursville, WV	37.5	1.8	36.9	32	1.8
2	CR 12	Multimodal/ Downtown	Hal Greer Boulevard	Huntington, WV	15.5	0.9	28.2	8	3.1
1	CR 13	Widening	I-64	Cabell County, WV	168.0	11.6	30.5	6	3.4
1	CR 14	Widening	I-64	Cabell County, WV	149.0	13.8	32.2	11	2.7
2	CR 15	Widening	Johns Branch Road/ Mason Road	Milton, WV	7.7	0.4	24.3	21	2.2
2	CR 16	Operations	US 60	Barboursville, WV	2.5	6.5	44.5	42	1.6
2	CR 17	Multimodal/ Downtown	US 60	Huntington, WV	1.8	2.8	29.8	25	2.0
2	CR 18	Widening	WV 10	Cabell County, WV	726.7	11.1	30.7	28	1.9
1	CR 19a	Operations	WV 2	Cabell County, WV	3.5	19.2	30.3	12	2.5
1	CR 19b	Widening	WV 2	Cabell County, WV	389.0	19.2	41.3	12	2.5
2	CR 20	Multimodal/ Downtown	WV 527	Huntington, WV	3.0	1.3	17.1	15	2.3

Table 3.3 - Prioritization Matrix (continued)

Tier	Project No.	Project Type	Project Road	Location	Estimated Cost (\$ Millions)	Project Length (Miles)	Objective Score	Steering Ranking	ommittee Average Score
Lawrence County, OH									
1	LR 1	New Location	Chesapeake Bypass	Lawrence County, OH	70.0	5.1	52.9	1	3.9
1	LR 2	Widening	Park Avenue (SR 93)	Ironton, OH	21.0	0.9	30.0	18	2.3
2	LR 3	Operations	CR 410 (Sams Walmart Way)	Burlington, OH	15.0	0.4	24.0	20	2.3
2	LR 4	New Location	SR 7 - US 35 Connector	Lawrence County, OH	125.8	12.8	31.3	36	1.7

Wayne County, wV

2	WB 1	Bridge Construction	I-73/74 Bridge	Ceredo, WV	90.0	0.8	14.4	2	3.8
1	WR 1	New Location	Access Road	Prichard, WV	3.0	0.2	32.3	10	2.9
2	WR 2	Widening	Centerville-Pridhard Rd. (CR 20) / Lynn Creek Rd.	Wayne County, WV	258.3	12.2	35.8	28	1.9
3	WR 3	Widening	Spring Valley Road	Wayne County, WV	197.2	5.2	24.9	37	1.7
3	WR 4	New Location	Spring Valley Road Connector	Wayne County, WV	72.5	3.0	14.7	35	1.8
2	WR 5	Widening	US 52 (future I-73/I-74)	Wayne County, WV	1249.9	26.6	21.8	17	2.3
1	WR 6	Widening	US 52 (future I-73/I-74)	Wayne County, WV	281.2	6.8	31.9	4	3.6
1	WR 7	Widening	US 52 (future I-73/I-74)	Wayne County, WV	104.6	8.6	36.2	4	3.6
2	WR 8	Widening	US 52 (future I-73/I-74)	Wayne County, WV	220.5	3.9	33.8	24	2.1
2	WR 9	Widening	US 52 (future I-73/I-74)	Wayne County, WV	74.3	2.5	32.3	31	1.8
3	WR 10	Widening	Docks Creek Road (CR 8)	Wayne County, WV	77.3	2.0	3.0	28	1.9
1	WR 11	Widening	Darling Lane	Wayne County, WV	7.1	0.3	30.0	15	2.3
2	WR 12	Widening	WV 152	Wayne and Cabell Counties, WV	251.6	5.4	44.4	25	2.0
2	WR 13	Widening	WV 152	Wayne County, WV	228.7	10.8	26.5	21	2.2
2	WR 14	Widening	Walkers Branch Road (CR 3)	Ceredo, WV	178.2	1.9	16.3	21	2.2
3	WR 15	New Location	Airport Road Connector	Wayne County, WV	17.8	1.2	27.7	25	2.0
1	WR 16	Widening	Goodwill Road	Wayne County, WV	14.3	1.0	41.1	7	3.2

Focus Areas

Through discussions with the project Steering Committee, six major focus areas were identified for transportation priorities in the KYOVA area:

- Goods Movement
- Tourism and Recreation
- Barriers to Mobility
- Congestion Mitigation
- Livability and Complete Streets
- Multimodal Integration

These focus areas closely mirror the guiding principles established for the KYOVA 2040 MTP. The Steering Committee also was asked to specify which of the focus areas held the most importance to the KYOVA area through a ranking exercise. Each recommendation in turn was compared to the six focus areas to see how the project responds to these regional needs. The result of this process is shown under "Objectives" in the "Project at a Glance" table on project sheets that follow.

Goods Movement

Tourism and Recreation

Barriers to Mobility

Congestion Mitigation

Livability and Complete Streets

Multimodal Integration

2040 Metropolitan Transportation Plan kyova Interstate Planning Commission

Downtown Huntington Access Study

The Downtown Huntington Access Study was a sister study to the KYOVA 2040 MTP and addressed specific transportation needs for the downtown Huntington area. Recommendations were developed through a public charrette process and have been folded into the KYOVA 2040 MTP.

Recommendations

A Preferred Access Strategy was developed to identify where emphasis should be placed on improving key facilities within the study area. Grand Boulevards-including $3^{\text {rd }}$ and $5^{\text {th }}$ Avenues, Hal Greer Boulevard, Midland Trail, US 52, and 5th Street-provide the backbone of the street network. These streets provide direct access from the interstate and points east-west along the Ohio River. Green Streets-including 4th Avenue and 10th Street-allow safe and convenient bicycle and pedestrian access to destinations such as Marshall University, Downtown Huntington, Ritter Park, and the Harris Riverfront Park. A series of issues and observations were established through the Preferred Access Strategy to guide the study's corridor and intersection-specific recommendations.
Recommendations suitable for inclusion in the KYOVA 2040 MTP have been added and assessed
through the regional prioritization system. A brief summary of the transportation recommendations are provided here. The complete Access Study is available on KYOVA's website.

Issue: One-way to Two-way Street Conversion
Recommendations: $3^{\text {rd }}$ and $5^{\text {th }}$ Avenues were recommended to operate with two-way traffic. Other recent studies have proposed road diets on these roads that maintain their one-way operation. A full corridor study is needed to determine multimodal impacts and future routing of US 60 .

Issue: Intersection Improvements

Recommendations: Improvements to study included installing high visibility crosswalks, directional signage, dedicated left turn lanes, street trees, and pedestrian count-down signals for $3^{\text {rd }}$ Avenue at $16^{\text {th }}$ and $20^{\text {th }}$ Streets; $5^{\text {th }}$ Avenue at $16^{\text {th }}$ and $20^{\text {th }}$ Streets; and $3^{\text {rd }}$ Avenue at Veterans Memorial Boulevard.

Issue: Corridor Improvements
Recommendations: A series of improvements related to roadway geometry, pedestrian access, stormwater, and streetscaping were recommended to Hal Greer Boulevard, US 60/Midland Trail, US 52, $5^{\text {th }}$ Street, $4^{\text {th }}$ Avenue, $8^{\text {th }}$ Avenue, and $10^{\text {th }}$ Street.

Project Sheets

Project sheets have been created for each roadway recommendation (excluding bridges) to support the development of the KYOVA 2040 MTP. The project sheet succinctly provides the location, description, objective, length, cost, year of implementation, operational characteristics, and multimodal characteristics. A vicinity map and illustrative cross-section also are provided. The project sheets are designed to be used by local governments and KYOVA to solicit funding and implementation of specific projects.

Project Objectives and Focus Areas are defined on Page 3-27 and are listed in written form in the Project at a Glance section of each project sheet.

Summary of Recommendation
Project ID and Name Information

Project CR1-6 | Guyandotte Streetscape

Several roadways are proposed to be streetscaped in the Guyandotte neighborhood in Huntington, West Virginia. The project includes bike lanes, landscaped medians, mast arm signals, and street trees. These improvements were recommended as a part of the Guyandotte Master Plan and will enhance neighborhood development and multimodal travel in the area. This project's primary benefit is to multimodal users and for aesthetic enhancement.

Project at a Glance

Project Key	CR1
Type	Operations
Location	Guyandotte, Cabell County, WV
Objectives	Livability \& Complete Streets
Length	3.11 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 17.6$ million
MTP Horizon Year	2040 and Vision
TIP ID	n / a

Operational Characteristics		
	Existing	Future
Facility Type	Collector	Collector
Travel Lanes	2	2
Volume	2,700	2,900
Capacity	11,900	11,900

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	Sidewalks	Bike Lanes
Transit Corridor	TTA Route 3	No Improvement
Freight Corridor	None	No Improvement

Project CR1-6 - Vicinity Map

Project CR7 | ${ }^{\text {st }}$ Street

$1^{\text {st }}$ Street is proposed to be widened to a 4-lane divided roadway with bike lanes from $4^{\text {th }}$ Avenue to 7th Avenue in Huntington, West Virginia. Improvements to this roadway will address two identified safety concern intersections, and will better distribute traffic within Downtown Huntington. This project will primarily address safety issues and enhance multimodal travel.

Project at a Glance	
Project Key	CR7
Type	Widening
Location	Huntington, Cabell County, WV

Operational Characteristics		
	Existing	Future
Facility Type	Minor Arterial	Principal Arterial
Travel Lanes	2	4
Volume	2,900	2,500
Capacity	11,900	28,200

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	Sidewalks	Bike Lanes
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project CR8 | 3 rd Avenue

3rd Avenue is proposed to be converted to a twoway roadway with bike lanes from US 52 to $31^{\text {st }}$ Street in Huntington, West Virginia. This project was recommended as a part of the Downtown Huntington Access Study. Conversion from one to two directions could help better serve nonmotorized users, provide enhanced access to businesses along the corridor, and improve corridor safety.

| Project at a Glance | |
| :--- | ---: | ---: |
| Project Key | CR8 |
| Type | Operations |
| Location | Huntington, Cabell County, WV |

Operational Characteristics		
	Existing	Future
	Principal	Principal
Facility	Arterial	Arterial
Type	4	4
Travel Lanes	7,800	10,700
Volume	28,200	28,200
Capacity		

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	Sidewalks	Bike Lanes
Transit Corridor	TTA Routes 3	No
Freight Corridor	$\& 9$	Improvement

Project CR8 - Vicinity Map

Project CR9 | $5^{\text {th }}$ Avenue

$5^{\text {th }}$ Avenue is proposed to be converted to a twoway roadway with bike lanes from US 52 to $31^{\text {st }}$ Street in Huntington, West Virginia. This project was recommended as a part of the Downtown Huntington Access Study. Conversion from one to two directions could help better serve nonmotorized users, provide enhanced access to businesses along the corridor, and improve corridor safety.

| Project at a Glance | |
| :--- | ---: | ---: |
| Project Key | CR9 |

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	Sidewalks	Bike Lanes
Transit Corridor	TTA Routes 3,	No
Freight Corridor	$7,10, \& 12$	Improvement

Project CR9 - Vicinity Map

Project CR10 | $8^{\text {th }}$ Avenue

8th $^{\text {th }}$ Avenue is proposed to be widened to a 4-lane roadway from Hal Greer Boulevard to US 60 in Huntington, West Virginia. This project was recommended as a part of the Downtown Huntington Access Study. Sections of this roadway are currently approaching congested conditions, a condition that is forecast to continue in the future. The primary purpose of widening this roadway would be to help address corridor and intersection safety, improve emergency service vehicle access, and improve east-west traffic circulation.

Project at a Glance	
Project Key	CR10
Type	Widening

Operational Characteristics		
	Existing	Future
Facility Type	Principal Arterial	Principal Arterial
Travel Lanes	2	4
Volume	8,500	6,500
Capacity	11,900	28,200

Project Objectives:

Multimodal Characteristics		
Existing	Improvement	
Bike/Ped Corridor	Sidewalks	No Improvement
Transit Corridor	TTA Route 8	No Improvement
Freight Corridor	None	No Improvement

Project CR11

College Avenue / Martha Road (CR 30/2)
College Avenue and Martha Road are proposed to be widened to 4-lane divided roadways in Barboursville, West Virginia. Sections of this roadway are forecast to approach congested conditions in the future. Widening these roadways will help to relieve congestion through Barboursville and improve corridor safety. The primary benefit of this project is to improve corridor safety.

Project at a Glance	
Project Key	CR11
Type	Widening
Location	Barboursville, Cabell County, WV
Objectives	Congestion Relief
Length	1.77 miles
Probable Construction Cost (in 2013 Dollars) $\$ 37.5$ million MTP Horizon Vision Year n / a TIP ID lr	

Operational Characteristics

	Existing	Future
Facility Type	Minor Arterial	Minor Arterial
Travel Lanes	2	4
Volume	2,300	3,600
Capacity	15,200	33,200

Project Objectives:

Multimodal Characteristics

Existing Improvement

Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project CR11 - Vicinity Map

Project CR12 | Hal Greer Boulevard

Hal Greer Boulevard is a high-mobility corridor that is proposed to be improved from Charleston Avenue to $3^{\text {rd }}$ Avenue in Huntington, West Virginia. The project includes the replacement of a viaduct with a new bridge, pump station, and a separate stormwater retention facility and pedestrian improvements. These improvements, recommended in the Downtown Huntington Access Study, will improve safety, relieve flooding concerns, and serve as an attractive gateway to Downtown Huntington and Marshall University.

Project at a Glance				
Project Key	CR12			
Type	Operations			
Location	Huntington, Cabell County, WV	\quad	Objectives	Livability \& Complete Streets and Multimodal Integration
:---	---:			
Length	0.85 miles			
Probable Construction Cost (in 2013 Dollars)	$\$ 15.5$ million			
MTP Horizon Year	2040			
TIP ID	n / a			

Operational Characteristics

Facility Type	Existing Principal Arterial	Future Principal Arterial
Travel Lanes	4	4
Volume	13,800	15,100
Capacity	28,200	28,200

Project CR12 - Vicinity Map

Project CR13 | I-64

I-64 is proposed to be widened to a 6-lane divided roadway from the W 17th Street Bridge to Barboursville, West Virginia. Widening this roadway will facilitate freight movement within and through the KYOVA region, and will reduce impacts to the overall transportation network reducing overall vehicle miles traveled and hours of delay. This improvement was recommended in the West Virginia Statewide Plan.

Project at a Clance	CR13
Project Key	Widening
Type	Cabell County, WV
Location	Goods Movement, Congestion Relief, and Barrier Mitigation
Objectives	11.6 miles
Length	$\$ 168.0$ million
Probable Construction Cost (in 2013 Dollars)	Vision
MTP Horizon Year	n / a
TIP ID	

Operational Characteristics

	Existing	Future
Facility Type	Freeway	Freeway
Travel Lanes	4	6
Volume	33,000	36,000
Capacity	73,600	110,300

Project CR14 | I-64

I-64 is proposed to be widened to a 6-lane divided roadway from Barboursville to Hurricane in West Virginia. Widening this roadway will facilitate freight movement within and through the KYOVA region, and will reduce impacts to the overall transportation network reducing overall vehicle miles traveled and hours of delay. This improvement was recommended in the West Virginia Statewide Plan.

Project at a Clance	CR14
Project Key	Widening
Type	Cabell County, WV
Location	Goods Movement, Congestion Relief, and Barrier Mitigation
Objectives	13.75 miles
Length	\$149.0 million
Probable Construction Cost (in 2013 Dollars)	Vision
MTP Horizon Year	n / a
TIP ID	

Operational Characteristics

	Existing	Future
Facility Type	Freeway	Freeway
Travel Lanes	4	6
Volume	41,200	57,600
Capacity	73,600	110,300

Project Objectives: ©e

Multimodal Characteristics

Existing Improvement

Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	Yes	No Improvement

Project CR14 - Vicinity Map

Project CR15

Jones Branch Road / Mason Road

Jones Branch Road / Mason Road is proposed to be widened to a 4-lane divided roadway in Milton, West Virginia. This roadway is currently approaching congested conditions, a condition that is forecast to worsen in the future. Widening this roadway is expected to relieve congestion and will help better serve the north-south mobility needs of Milton.

Project at a Glance	
Project Key	CR15
Type	Widening
Location	Milton, Cabell County, WV
Objectives	Congestion Relief
Length	0.36 miles
Probable Construction Cost	$\$ 7.7$ million
(in 2013 Dollars)	2040
MTP Horizon Year	n / a
TIP ID	

Operational Characteristics		
	Existing	Future
Facility Type	Collector	Minor Arterial
Travel Lanes	2	4
Volume	13,000	17,700
Capacity	15,200	33,200

Project Objectives:

Multimodal Characteristics
Existing Improvement

Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project CR15 - Vicinity Map

Project CR16 | US 60

US 60 is proposed to be improved from $5^{\text {th }}$ Street to Cyrus Creek Road in Barboursville, West Virginia. Sections of this roadway are currently experiencing congested conditions, a condition that is forecast to continue in the future. Performing intersection improvements and corridor signal timing will relieve congestion, improve intersection and corridor safety issues, and will help better serve growing population based in Pea Ridge and Barboursville.

Project at a Glance	
Project Key	CR16
Type	Operations
Location	Barboursville, Cabell County, WV
Objectives	Congestion Relief, Barrier Mitigation and Multimodal Integration
Length	6.5 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 2.5$ million
MTP Horizon Year	2040
TIP ID	n / a

Operational Characteristics

Facility Type	Existing Principal Arterial	Future Principal Arterial
Travel Lanes	3	3
Volume	15,600	17,200
Capacity	15,200	15,200

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Bike Route Signage
Transit Corridor	TTA Routes	No
Freight Corridor	Yes	Improvement

Project CR16- Vicinity Map

Project CR17 | US 60

US 60 is proposed to be improved from $5^{\text {th }}$ Street to $8^{\text {th }}$ Avenue in Huntington, West Virginia. Sections of this roadway are forecast to approach congested conditions in the future. The project includes access management and laneage improvements which will help US 60 better accommodate regional and local traffic needs. These improvements will also improve intersection and corridor-level safety. These improvements were recommended as a part of the Downtown Huntington Access Study.

Project at a Glance	CR17
Project Key	Operations
Type	Huntington, Cabell County, WV
Location	Congestion Relief, Barrier Mitigation, Livability \& Complete Streets, and Multimodal Integration
Objectives	2.83 miles
Length	\$1.8 million
Probable Construction Cost (in 2013 Dollars)	U306-60/-2.970
MTP Horizon Year	CMAQ-0060(236)D

Operational Characteristics
Existing
Future

	Existing	Future
Facility Type	Minor Arterial	Minor Arterial
Travel Lanes	4	4
Volume	22,000	22,000
Capacity	28,200	28,200

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Bike Lanes
Transit Corridor	TTA Routes 7 \& 9	No
Freight Corridor	Yes	No

Project CR17 - Vicinity Map

Project CR18 | WV 10

WV 10 is proposed to be widened to a 4-lane divided roadway with wide shoulders from Melissa Road to Chapmanville in Cabell County, West Virginia. Widening this roadway will create a more viable alternate route for regional traffic, as well as reducing regional vehicle hours of delay. This project was previously identified as a part of the West Virginia Statewide Plan and is a major regional access route.

Project at a Glance					
Project Key	CR18				
Type	Widening	$	$	Location	Congestion Relief and Barrier Mitigation
:---	---:				
Objectives	11.1 miles				
Length	$\$ 726.7$ million				
Probable Construction Cost (in 2013 Dollars)	Vision				
MTP Horizon Year	n / a				
TIP ID					

Operational Characteristics
Existing
Future

Facility Type	Minor Arterial	Minor Arterial
Travel Lanes	2	4
Volume	5,700	8,800
Capacity	16,500	36,700

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Wide Shoulders
Transit Corridor	None	No Improvement
Freight Corridor	Yes	No Improvement

Project CR18 - Vicinity Map

Project CR19a | WV 2

WV 2 is proposed to be improved from Huntington to Point Pleasant in West Virginia as Phase I of WV 2 Improvements. Intersection enhancements and truck pull-out lanes on WV 2 will improve freight mobility, serve growing industrial centers, and enhance regional connectivity.

Project at a Glance	
Project Key	CR19a
Type	Operations

Operational Characteristics

	Existing	Future
Facility	Principal Type	Principal Arterial
Travel Lanes	2	2
Volume	7,200	7,200
Capacity	16,500	16,500

Project Objectives: 8 \&

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	No
Transit Corridor	TTA Route	
3	Improvement	
Freight Corridor	Yes	Improvement

Project CR19a - Vicinity Map

Project CR19a - Proposed Typical Cross-Section

Project CR19b | WV 2

WV 2 is proposed to be widened to a 4-lane divided roadway from Huntington to Point Pleasant in West Virginia as Phase II of WV 2 Improvements. Widening WV 2 improves freight mobility, serves growing industrial centers, and enhances regional connectivity. This project is identified as a part of the West Virginia Statewide Plan. The primary benefit of this project is economic development.

Project at a Glance	
Project Key	CR19b
Type	Widening
Location	Cabell County, WV
Objectives	Goods Movement and Barrier Mitigation
Length	19.2 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 389.0$ million
MTP Horizon Year	Vision
TIP ID	n / a

Operational Characteristics

	Existing	Future
Facility	Principal Arterial	Principal Arterial
Trave	2	4
Volume Lanes	7,200	10,200
Capacity	16,500	36,700

Project Objectives: 8 日

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Bike Lanes
Transit Corridor	TTA Route 3	No Improvement
Freight Corridor	Yes	No Improvement

Project CR19b - Vicinity Map

Project CR19b - Proposed Typical Cross-Section

Project CR20 | WV 527

WV 527 is proposed to be improved from I-64 to $8^{\text {th }}$ Avenue in Huntington, West Virginia. This project was recommended as part of the Downtown Huntington Access Study. Sections of this roadway are currently approaching congested conditions, a condition that is forecast to continue in the future. Improvements would improve corridor and intersection safety, create an aesthetic gateway into Downtown Huntington, and create a more viable alternate route for vehicles entering the City.

Project at a Glance

Project Key	CR21
Type	Widening
Location	Huntington, Cabell County, WV
Objectives	Congestion Relief, Livability \& Complete Streets, and Multimodal Integration
Length	1.3 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 3.0$ million
MTP Horizon Year	2040
TIP ID	U306-527/-038 00

Operational Characteristics		
	Existing	Future
Facility Type	Principal Arterial	Principal Arterial
Travel Lanes	2	2
Volume	13,000	14,700
Capacity	16,500	16,500

Project Objectives:

Multimodal Characteristics

Existing Improvement

Bike/Ped Corridor	Sidewalks	Bike Route Signage
Transit Corridor	None	No Improvement
Freight Corridor	Yes	No Improvement

Project CR20 - Vicinity Map

Project LR1 | Chesapeake Bypass

A new 4-lane divided bypass roadway is proposed between Chesapeake and Proctorville in Lawrence County, Ohio. This project, identified as part of the 2035 KYOVA MTP, would create an effective bypass around the communities of Chesapeake and Proctorville. It would reduce regional hours of delay and improve travel for freight traffic in the region. This project has been identified as a high priority by members of the public.

Project at a Glance	
Project Key	LR1
Type	New Location
Location	Lawrence County, OH
Objectives	Congestion Relief and Barrier Mitigation
Length	5.12 miles
Probable Construction Cost	$\$ 70.0$ million
(in 2013 Dollars)	2030
MTP Horizon Year	75923
TIP ID	80998

Operational Characteristics

	Existing	Future
Facility Type	n / a	Principal Arterial
Travel Lanes	n / a	4
Volume	n / a	5,400
Capacity	n / a	64,300

Project LR1 - Proposed Typical Cross-Section

Project LR2 | Park Avenue

Park Avenue is proposed to be widened to a 4-lane divided roadway from Campbell Avenue to US 52 in Ironton, Ohio. This project will provide a viable connection from US 52 to the Ironton-Russell bridge through Downtown Ironton.

Project at a Glance	
Project Key	LR2
Type	Widening
Location	Ironton, Lawrence County, OH
Objectives	Barrier Mitigation
Length	and Livability \& Complete Streets

Operational Characteristics		
	Existing	Future
Facility Type	Minor Arterial	Principal Arterial
Travel Lanes	2	4
Volume	4,900	6,700
Capacity	11,900	28,200

Project Objectives:

Multimodal Characteristics		
Bike/Ped	Existing	Improvement
Corridor	Sidewalks	Bike Route Signage
Transit Corridor	TTA Route	No Freight Corridor

Project LR2 - Vicinity Map

Project LR3 | CR 410 (Sams Walmart Way)

CR 410 is proposed to be improved from Old US 52 to US 52 in Burlington, Ohio. The project includes access management, restriping, and the construction of an interchange with US 52. Operational improvements at this location will help improve intersection and corridor level safety, and will serve a developing commercial area.

Project at a Glance	LR3
Project Key	Operations
Type	Burlington, Lawrence County, OH
Location	Barrier Mitigation
Objectives	and Livability \& Complete Streets

Operational Characteristics

	Existing	Future
Facility Type	Local	Collector
Travel Lanes	2	2
Volume	3,700	3,800
Capacity	11,900	11,900

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	No
Transit Corridor	TTA Route	Improvement
Freight Corridor	12	Improvement

Project LR3 - Vicinity Map

Project LR3 - Proposed Typical Cross-Section

Project LR4 | SR 7 - US 35 Connector

A new 2-lane roadway is proposed between Proctorville and the Gallia County Line in Lawrence County, Ohio. The project would utilize a 60 mph design speed, intersections at public roads, and no private driveways. The proposed roadway would serve as a viable north-south connection, decreasing travel times and encouraging economic development.

Project at a Glance

Project Key	LR4
Type	New Location
Location	Lawrence County, OH
Objectives	Congestion Relief, Barrier Mitigation,
Length	12.8 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 125.8$ million
MTP Horizon Year	2040 and Vision
TIP ID	n / a

Operational Characteristics

	Existing	Future
Facility Type	n / a	Minor Arterial
Travel Lanes	n / a	2
Volume	n / a	1,600
Capacity	n / a	16,500

Project Objectives:

Multimodal Characteristics
Existing Improvement

Bike/Ped Corridor	n / a	No Improvement
Transit Corridor	n / a	No Improvement
Freight Corridor	n / a	No Improvement

Project LR4 - Vicinity Map

Project WR1 | Prichard Access Road

A new access road is proposed from US 52 to the proposed overpass at Old US 52 in Prichard, West Virginia. This new road is part of the improvements to better serve the Prichard Intermodal Facility. This facility will improve freight mobility, reduce barriers to travel in the area, and improve the economic vitality of the site. This project has been identified as a high priority through the federal TIGER program.

Project at a Glance	
Project Key	WR1
Type	New Location

Operational Characteristics		
	Existing	Future
Facility Type	n / a	Collector
Travel Lanes	n / a	2
Volume	n / a	n / a
Capacity	n / a	16,500

Project Objectives:

Multimodal Characteristics
Existing Improvement

Bike/Ped Corridor	n / a	No Improvement
Transit Corridor	n / a	No Improvement
Freight Corridor	n / a	Yes

Project WR1 - Vicinity Map

Project WR2 | Centerville-Prichard Road (CR 20) / Lynn Creek Road
Centerville-Prichard Road and Lynn Creek Road are proposed to be widened to 4-lane roadways from Prichard to Lavalette in Wayne County, West Virginia. Improving these roads will create a viable access connection between WV 152 and US 52, significantly reduce regional hours of delay, and provide a new east-west connection across Wayne County. The primary purpose of this project is for economic development and enhanced mobility.

Project at a Glance				
Project Key	WR2			
Type	Widening	\quad	Location	Goods Movement and Congestion Relief
:---	---:			
Objectives	12.24 miles			
Length	$\$ 258.3$ million			
Probable Construction Cost (in 2013 Dollars)	Vision			
MTP Horizon Year	n / a			
TIP ID				

Operational Characteristics		
Facility Type	Collector	Future Minor
Travel Lanes	2	4
Volume	2,600	8,800
Capacity	16,500	36,700

Project Objectives:
 \section*{(8)}

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	None	Yes

Project WR2 - Vicinity Map

Project WR3 \| Spring Valley Drive

Spring Valley Drive is proposed to be widened to a 3-lane roadway with a two-way left-turn lane from WV 75 to I-64 in Wayne County, West Virginia. Widening this road to include a center turn lane will improve corridor safety and provide an enhanced connection for the residential and commercial uses in the area. The primary benefit of this project is enhanced corridor safety.

Project at a Glance	
Project Key	WR3
Type	Widening
Location	Wayne County, WV
Objectives	Barrier Mitigation
Length	5.98 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 197.2$ million
MTP Horizon Year	Vision
TIP ID	n / a

Operational Characteristics		
	Existing	Future
Facility Type	Collector	Minor Arterial
Travel Lanes	2	3
Volume	4,200	5,000
Capacity	16,500	16,500

Project Objectives:

Multimodal Characteristics

Bike/Ped Corridor	Existing	Improvement
Transit Corridor	None	Bike Lanes Route
Freight Corridor	None	No Improvement

Project WR3 - Vicinity Map

Project WR3 - Proposed Typical Cross-Section

Project WR4 | Spring Valley Drive Connector

A new 2-lane roadway with wide shoulders is proposed from Sherwood Drive to I-64 in Wayne County, West Virginia. This connection provides users with a direct linkage between Downtown Huntington and Spring Valley Road. The West Virginia Statewide Plan identifies this project as a priority.

Project at a Glance

Project Key	WR4				
Type	New Location	$	$	Location	Congestion Relief and Barrier Mitigation
---:	---:				
Objectives	2.98 miles				
Length	$\$ 72.5$ million				
Probable Construction Cost (in 2013 Dollars)	Vision				
MTP Horizon Year	n / a				
TIP ID					

Operational Characteristics		
	Existing	Future
	nacility Type	n / a
Travel Lanes	n / a	Minor Arterial
Volume	n / a	2
Capacity	n / a	4,200

Project Objectives:

Multimodal Characteristics

Existing Improvement

Bike/Ped Corridor	n / a	Wide Shoulders
Transit Corridor	n / a	No Improvement
Freight Corridor	n / a	No Improvement

Project WR4 - Vicinity Map

Project WR4 - Proposed Typical Cross-Section

Project WR5-9 | US 52

US 52 is proposed to be widened to a 4-lane divided roadway from Kermit to Hubbardstown. US 52 has been identified as the future alignment for the I-73/I-74 in the KYOVA region. Improving this roadway will serve regional mobility and goods movement needs. This is a listed project in the West Virginia Statewide Plan and has been identified as a high-priority project regionally for its potential economic development benefits.

Project at a Glance

Project Key	WR5-9
Type	Widening
Location	Wayne County, WV
Objectives	Goods Movement and Barrier Mitigation
Length	48.42 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 1930.5$ million
MTP Horizon Year	Vision
TIP ID	Multiple (unfunded)

Operational Characteristics		
	Existing	Future Facility Type
Principal Arterial	Principal Arterial	
Travel Lanes	2	4
Volume	6,300	7,700
Capacity	22,200	64,300

Project Objectives: 8 日是

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	Yes	No Improvement

Project WR5-9 - Vicinity Map

Project WR10 | Docks Creek Road (CR-8)

Docks Creek Road is proposed to be widened to a 4-lane divided roadway from US 52 to WV 75 in Wayne County, West Virginia. Improvements to this roadway will facilitate an improved back entrance to the Tri-State Airport. Additionally, intermodal freight connections will be better served by establishing an improved connection with US 52. The primary benefit of this project is improved freight mobility between intermodal terminals.

Project at a Glance

Project Key	WR10
Type	Widening
Location	Wayne County, WV
Objectives	Goods Movement and Barrier Mitigation
Length	2.03 miles
Probable Construction Cost (in 2013 Dollars)	$\$ 180.5$ million
MTP Horizon Year	Vision
TIP ID	n / a

Operational Characteristics

Facility Type	Collector	Future
Minor Arterial		

Project Objectives:

Multimodal Characteristics

Existing Improvement

Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project WR11 | Darling Lane

Darling Lane is proposed to be widened to a 4-lane divided roadway from WV 75 to the Tri-State Airport in Wayne County, West Virginia. Improvements to this roadway will facilitate an improved back entrance to the Tri-State Airport. Additionally, intermodal freight connections will be better served by establishing an improved connection with US 52.

Project at a Glance

Project Key	WR11
Type	Widening
Location	Wayne County, WV
Objectives	Goods Movement and Barrier Mitigation
Length	0.33 miles
Probable Construction Cost	$\$ 7.1$ million
(in 2013 Dollars)	2040
MTP Horizon Year	n / a
TIP ID	

Operational Characteristics		
	Existing	Future
	Local	Collector
Facility Type	2	4
Travel Lanes	n $/ \mathrm{a}$	n / a
Volume	n / a	16,500
Capacity		

Project Objectives:

Multimodal Characteristics

Existing Improvement

Bike/Ped Corridor	None	No Improvement
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project WR11 - Vicinity Map

Project WR12 | WV 152

WV 152 is proposed to be widened to a 4-lane divided roadway with bike lanes from Lavalette to Huntington in West Virginia. This project will improve access to the Lavalette area for all travel modes. In addition, improvements to this roadway will alleviate intersection and corridor safety issues. The primary benefit of this project is enhanced safety and multimodal travel enhancements.

Project at a Glance

Project Key	WR12
Type	Widening
Location	Wayne and Cabell Counties, WV
Objectives	Livability \& Complete Streets, Multimodal Integration, and Tourism and Recreation
Length	5.4 miles
Probable Construction Cost (in 2013 Dollars)	\$251.6 million
MTP Horizon Year	Vision
TIP ID	n / a

Operational Characteristics		
	Existing	Future
Facility Type	Minor Arterial	Minor Arterial
	2	4
Volume	9,200	9,900
Capacity	16,500	36,700

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Bike Lanes
Transit Corridor	None	No Improvement
Freight Corridor	Yes	No Improvement

Project WR12 - Vicinity Map

Project WR13 | WV 152

WV 152 is proposed to be widened to a 4-lane divided roadway with wide shoulders from Wayne to Lavalette in Wayne County, West Virginia. Improvements to this section of WV 152 facilitate enhanced multimodal connections between Huntington and Wayne. The primary purpose of this project is economic development and multimodal travel benefits.

Project at a Glance					
Project Key	WR13				
Type	Widening	$	$	Location	Goods Movement,
---:	---:				
Objectives	Livability \& Complete Streets, and Multimodal Integration,				
Length	10.83 miles				
Probable Construction Cost (in 2013 Dollars)	$\$ 228.7$ million				
MTP Horizon Year	Vision				
TIP ID	n / a				

Operational Characteristics		
	Existing	Future
Facility Type	Minor Arterial	Minor Arterial
Travel Lanes	2	4
Volume	4,800	4,600
Capacity	16,500	36,700

Project WR14 | Walkers Branch Road (CR3)

Walkers Branch Road is proposed to be widened to a 4-lane divided roadway from Walkers Branch Road Bridge to I-64 in Ceredo, West Virginia. Widening this section of Walkers Branch Road improves connections to the Huntington Tri-State Airport and also serves multimodal travel needs in the area.

Project at a Glance

Project Key	WR14
Type	Widening
Location	Ceredo, Wayne County, WV
Objectives	Goods Movement, Multimodal Integration, and Tourism \& Recreation
Length	1.92 miles
Probable Construction Cost (in 2013 Dollars)	\$178.2 million
MTP Horizon Year	Vision
TIP ID	n / a

Operational Characteristics		
	Existing	Future
Facility Type	Collector	Minor Arterial
Travel Lanes	2	4
Volume	2,300	4,500
Capacity	15,200	33,200

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Bike Lanes
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project WR14 - Vicinity Map

Project WR15 | Airport Road Connector

A new 2-lane connector roadway is proposed from US 52 to Airport Road in Wayne County, West Virginia. This new facility will facilitate an alternate entry point to the Tri-State Airport. Additionally, intermodal freight connections will be better served by establishing an improved connection with US 52.

Project at a Glance	
Project Key	WR15

Operational Characteristics		
	Existing	Future
Facility Type	n / a	Collector
Travel Lanes	n / a	2
Volume	n / a	500
Capacity	n / a	16,500

Project Objectives:

 (B)

 (B)}Multimodal Characteristics

	Existing	Improvement
Bike/Ped Corridor	n / a	No Improvement
Transit Corridor	n / a	No Improvement
Freight Corridor	n / a	No Improvement

Project WR15 - Vicinity Map

Project WR16 | Goodwill Road

Goodwill Road is proposed to be widened to a $4-$ lane divided roadway from Walkers Branch Road to Spring Valley Drive in Wayne County, West Virginia. Widening this section of Goodwill Road improves connections to the Huntington Tri-State Airport and also serves multimodal travel needs in the area.

Project at a Glance	
Project Key	WR16
Type	Widening
Location	Multimodal Integraty, WV Tourism \& Recreation
Objectives	1.00 miles
Length	$\$ 14.3$ million
Probable Construction Cost (in 2013 Dollars)	Vision
MTP Horizon Year	n / a
TIP ID	

Operational Characteristics		
	Existing	Future
Facility Type	Local	Minor Arterial
Travel Lanes	2	4
Volume	1,800	5,700
Capacity	12,200	36,700

Project Objectives:

Multimodal Characteristics		
	Existing	Improvement
Bike/Ped Corridor	None	Bike Lanes
Transit Corridor	None	No Improvement
Freight Corridor	None	No Improvement

Project WR16 - Vicinity Map

This page intentionally left blank.

